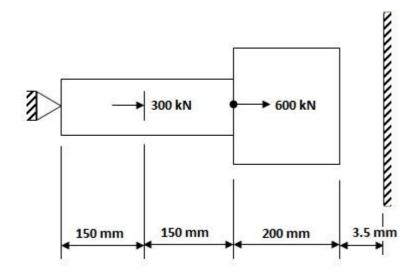

Printe	ed Pa	ge:-04 Subject Code:- AMTME0211	-		
		Roll. No:	٦		
NO	IDA	INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA	╝		
110		(An Autonomous Institute Affiliated to AKTU, Lucknow)			
		M.Tech			
		SEM: II - THEORY EXAMINATION (2024- 2025)			
7 73•	2.1	Subject: Advanced Finite Element Analysis	^		
		Hours Max. Marks: 7 structions:	U		
		structions: by that you have received the question paper with the correct course, code, branch etc.			
		stion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice			
		MCQ's) & Subjective type questions.			
		n marks for each question are indicated on right -hand side of each question.			
		your answers with neat sketches wherever necessary.			
		uitable data if necessary.			
		ly, write the answers in sequential order. should be left blank. Any written material after a blank sheet will not be			
		hecked.			
SECT	ION-	<u>-A</u> 1	5		
1. Atte	empt a	all parts:-			
1-a.	_		1		
ı u.		(1)	•		
	(a)	Variational and Weighted residual approaches			
	(b)	Differential equations			
	(c)	Algebraic equations			
	(d)	Geometric equations			
-		Which property of materials is considered in plate bending problems with	1		
	ar	nisotropic materials using FEM? (CO2, K1)			
	(a)	Directional stiffness			
	(b)	Isotropic conductivity			
	(c)	Uniform density			
	(d)	Homogeneous elasticity			
1-c.		What are the limitations of relying on idealized stiffness in beam elements for nalyzing beam-slab problems? (CO3, K1)	1		
	(a)	Neglects local deformations			
	(b)	Ignores global structural behavior			
	(c)	Assumes linear material properties			
	(d)	Increases computational complexity			
1-d.	` ,	What role does mesh generation play in Finite Element Analysis? (CO4, K1)	1		

	(a)	It discretizes the domain into smaller elements	
	(b)	It specifies boundary conditions	
	(c)	It solves numerical equations	
	(d)	It optimizes computational efficiency	
1-e.		What advantage does Finite Element Method (FEM) offer in terms of design ptimization compared to conventional analysis methods? (CO5, K1)	1
	(a)	Allows for detailed exploration of design space	
	(b)	Limits design exploration opportunities	
	(c)	Increases reliance on simulation tools	
	(d)	Requires extensive computational resources	
2. Atı	empt a	all parts:-	
2.a.	W	What do yean by Discretization? (CO1, K1)	2
2.b.	V	What is meant by axisymmetric analysis in FEM? (CO2, K1)	2
2.c.	V	What is meant by "idealization" in structural modeling? (CO3, K1)	2
2.d.	V	What is the significance of computer graphics in FEA? (CO4, K1)	2
2.e.	V	What is the output of a typical FEM simulation? (CO5, K1)	2
SEC.	ΓΙΟΝ-	- <u>B</u>	20
3. An	swer a	any <u>five</u> of the following:-	
3-a.	W	What are the advantages and disadvantages of using FEM over FDM? (CO1, K1)	۷
3-b.		What are the applications and limitation of FEM? (CO1, K1)	۷
3-c.		viscuss plate bending problems under FEM with focus on isotropic vs. anisotropic naterial behavior. (CO2, K2)	۷
3-d.		tate the important considerations when modeling heat conduction using FEM. CO2, K2)	۷
3.e.		What are the boundary conditions taken to solve the simply supported beams roblem using FEM? (CO3, K2)	۷
3.f.	W	What are the challenges in data preparation for FEA? (CO4, K2)	۷
3.g.	W	What is the basic purpose of integrating FEM with CAD? (CO5, K2)	4
SEC.	ΓΙΟΝ-	<u>-C</u>	35
4. An	swer a	any one of the following:-	
4-a.	(a	Write short notes on the following method to solve FEM problem: (CO1, K2) a) Galerkin method b) Weighted residual method	7
4-b.	F	ind the nodal displacement of a mid-point P of a bar of length L whose one end is xed. (CO1, K3)	7



- 5. Answer any one of the following:-
- 5-a. A composite wall consisting of three material as shown in figure. The outer temperature is $To = 20^{\circ}C$, convection heat transfer takes place on the inner surface of the wall $T\omega = 800^{\circ}C$ and $h = 25 \text{ W/m}^{2}{\circ}C$. Determine the temperature distribution in the wall. (CO2, K3)

7

- 5-b. The nodal coordinates of triangular element are P_1 (1, 2), P_2 (5, 3), and P_3 (4, 6). The x coordinate of inner point P is (3, 3) and shape function N_1 = 0.3. Determine N_2 , N_3 and y coordinate of the point P. (CO2, K3)
- 6. Answer any one of the following:-
- 6-a. Determine the element stiffness matrix for a simply supported beam of length L subjected to point load at mid of beam. (CO3, K3)
- 6-b. Determine the nodal displacements, element stresses and support reactions for the bar shown in figure below. The cross-sectional areas are 250 mm^2 and 400 mm^2 . Young modulus $E = 200 \times 10^9 \text{ N/m}^2$. (CO3, K3)

- 7. Answer any one of the following:-
- 7-a. What are the different types of elements? How does the choice of element type affect the accuracy of a finite element model? Explain in brief. (CO4, K2)

7

7

- 7-b. Describe the function of the preprocessor and postprocessor in an FEA program. (CO4, K2)
- 8. Answer any one of the following:-
- 8-a. What are the features are desirable in FEM packages for solving engineering 7 problems? Also explain general purpose vs special purpose programs in FEM. (CO5, K2)
- 8-b. Describe a complete case study or example where FEM was used to refine or validate an existing product design which include meshing, boundary conditions, and results interpretation. (CO5, K2)